Search Results/Filters    

Filters

Year

Banks




Expert Group











Full-Text


Title: 
Author(s): 

WATKINS C.J.C.H. | DAYAN P.

Journal: 

MACHINE learning

Issue Info: 
  • Year: 

    1992
  • Volume: 

    -
  • Issue: 

    -
  • Pages: 

    279-292
Measures: 
  • Citations: 

    1
  • Views: 

    133
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 133

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    0
  • Volume: 

    3
  • Issue: 

    (ویژه نامه 10)
  • Pages: 

    57-58
Measures: 
  • Citations: 

    0
  • Views: 

    695
  • Downloads: 

    0
Abstract: 

مقدمه: نظر به اینکه سیستم آموزشی فعلی جهت دانشجویان گروه پزشکی به نحوی است که دانشجویان بیشتر زمان آموزش خود را در چارچوب برنامه های رسمی محدود به شرایط تصنعی و کلاسیک طی می کنند، در نتیجه میزان رضایت از کیفیت آموزش به روش موجود و کاربرد آموخته ها در شرایط واقعی نیاز به بررسی و حتی تغییر در رویکرد حاضر دارد.مرور مطالعات: با مطالعه تاریخچه خدمات و آموزش جامعه نگر و جامعه محور در می یابیم که حدود یک قرن پیش به صورت Service learning ارایه خدمات و آموزش به فراگیران همزمان در بستر جامعه انجام می پذیرفت. از اوایل 1900 تاکنون، آموزش دهندگان متوجه اهمیت ارتباط خدمات با اهداف آموزش شده اند و درطی قرن از 1960 تا 1970 در نتیجه S.L گذشته این مفهوم در آموزش جایگاه خود را حفظ کرده است. اغلب برنامه های فعالیت دانشجویان در جامعه در راستای اهداف آموزش توسعه یافت. این S.L اساس اعتقاد و مشابه نگرش ساختار گراهاست که معتقدند تولید و ساخت دانش در افراد از دانش و تجربیات پایه و مقدماتی شروع می شود بطرف فرایند یادگیری، تفسیر و بحث پیرامون اطلاعات جدید در زمینه اجتماع و محیط فردی پیش می رود. در حقیقت مفهوم یادگیری دو طرفه اساس و وجه تمایز تجربه ناشی از آموزش به روش دانشجویان به اهداف آموزشی دروس خود با مشارکت در برنامه های ارایه خدمت در شرایط واقعی دست می یابند و جامعه نیز مستقیما از آن بهره مند می شود. در این روش هم فراگیر و هم جامعه بهره مند می شوند. و فراگیران فعالانه به تولید محصول و خدمت مرتبط با اهداف آموزش می پردازند. با توسعه نگرشها، باورها و رفتارها در ارتباط با جامعه، شهروندانی مطلع و نیروی کار تولیدی تربیت می کنند. در این روش اساس کار دریافت باز خورد از جامعه و مدرسان است که به فراگیران فرصت می دهد دانش جدید خود را با دیگران مطرح کند و آموخته های خود را برای دیگران معنی دار کنند.بحث: در آموزش سنتی مردم بر خدماتی که دریافت میکنند، هیچ گونه کنترلی ندارند، فراگیران نیز قدرت مداخله و کاربرد آموخته های خود را ندارند ولی در این آموزش، تمام ابعاد نیازهای مردم دیده می شود و فراگیران با مشارکت مردم روی نیازها کار می کنند، مردم بر ارایه خدمات نظارت دراند. انریش می گوید: یادگیری فراگیران از طریق خواندن کتابهای قطور در اطاقهای در بسته ایجاد نمی شود، بلکه باید درهای پنجره ها را باز کرد و به دنبال تجربه بود. در نهایت به کمک SL فرصتی برای آزمون مسوولیت پذیری، تبدیل شدن به یک شهروند خوب را برای فراگیران در حین دستیابی به اهداف آموزش و ارایه خدمت به مردم ایجاد نماییم.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 695

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2022
  • Volume: 

    14
  • Issue: 

    supplement 2
  • Pages: 

    103-117
Measures: 
  • Citations: 

    0
  • Views: 

    170
  • Downloads: 

    45
Abstract: 

Limited energy capacity, physical distance between two nodes and the stochastic link quality are the major parameters in the selection of routing path in the internet of things network. To alleviate the problem of stochastic link quality as channel gain reinforcement based Q-learning energy balanced routing is presented in this paper. Using above mentioned parameter an optimization problem has been formulated termed as reward or utility of network. Further, formulated optimization problem converted into Markov decision problem (MDP) and their state, value, action and reward function are described. Finally, a QRL algorithm is presented and their time complexity is analyses. To show the effectiveness of proposed QRL algorithm extensive simulation is performed in terms of convergence property, energy consumption, residual energy and reward with respect to state-of-art-algorithms.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 170

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 45 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

TESAURO G. | KEPHART J.O.

Issue Info: 
  • Year: 

    2002
  • Volume: 

    5
  • Issue: 

    3
  • Pages: 

    289-304
Measures: 
  • Citations: 

    1
  • Views: 

    148
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 148

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

    20
  • Issue: 

    4
  • Pages: 

    291-300
Measures: 
  • Citations: 

    0
  • Views: 

    295
  • Downloads: 

    0
Abstract: 

Fog computing is an emerging research field for providing cloud computing services to the edges of the network. Fog nodes process data stream and user requests in real-time. In order to optimize resource efficiency and response time, increase speed and performance, tasks must be evenly distributed among the fog nodes. Therefore, in this paper, a new method is proposed to improve the load balancing in the fog computing environment. In the proposed algorithm, when a task is sent to the fog node via mobile devices, the fog node using reinforcement learning decides to process that task itself, or assign it to one of the neighbor fog nodes or cloud for processing. The evaluation shows that the proposed algorithm, with proper distribution of tasks between nodes, has less delay to tasks processing than other compared methods.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 295

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2011
  • Volume: 

    1
  • Issue: 

    2
  • Pages: 

    1-9
Measures: 
  • Citations: 

    1
  • Views: 

    126
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 126

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    1397
  • Volume: 

    1
Measures: 
  • Views: 

    818
  • Downloads: 

    0
Abstract: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 818

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
Author(s): 

Seyed Ebrahimi Seyed Hossein | Majidzadeh Kambiz | SOLEIMANIAN GHAREHCHOPOGH FARHAD

Issue Info: 
  • Year: 

    2021
  • Volume: 

    6
  • Issue: 

    2
  • Pages: 

    37-52
Measures: 
  • Citations: 

    0
  • Views: 

    34
  • Downloads: 

    17
Abstract: 

Classification is a crucial process in data mining, data science, machine learning, and the applications of natural language processing. Classification methods distinguish the correlation between the data and the output classes. In single-label classification (SLC), each input sample is associated with only one class label. In certain real-world applications, data instances may be assigned to more than one class. The type of classification which is required in such applications is known as multi-label classification (MLC). In MLC, each sample of data is associated with a set of labels. Due to the presence of multiple class labels, the SLC learning process is not applicable to MLC tasks. Many solutions to the multi-label classification problem have been proposed, including BR, FS-DR, and LLSF. But, these methods are not as accurate as they could be. In this paper, a new multi-label classification method is proposed based on graph representation. A feature selection technique and the Q-learning method are employed to increase the accuracy of the proposed algorithm. The proposed multi-label classification algorithm is applied to various standard multi-label datasets. The results are compared with state-of-the-art algorithms based on the well-known performance evaluation metrics. Experimental results demonstrated the effectiveness of the proposed model and its superiority over the other methods.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 34

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 17 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Journal: 

Scientia Iranica

Issue Info: 
  • Year: 

    2022
  • Volume: 

    29
  • Issue: 

    5 (Transactions E: Industrial Engineering)
  • Pages: 

    2728-2739
Measures: 
  • Citations: 

    0
  • Views: 

    42
  • Downloads: 

    16
Abstract: 

The current study presents an incentive contract model to allocate income to venture projects. In this respect, Venture Capital (VC), as one of the main sources of , financing innovative projects, faces several challenges such as moral hazards, information asymmetry, and interest con icts, often referred to as three agency problems. In addition to the identi , cation of the factors that may a , ect the income of venture projects and elaboration of cost functions, this study presented an optimal incentive contract model from the perspectives of venture capitalists and entrepreneurs. In this model, a venture capitalist, as an active investor, provides entrepreneurs with managerial and training assistance. The results revealed that the higher the initial ability of the entrepreneur was, the less money the venture capitalist would pay for training. Of note, in case the venture contract was not accepted, the wealth that the contract parties would obtain would become an in uential factor in the contract payment function. This model was studied considering the bounded rationality hypothesis and implemented using the Q-learning algorithm. In addition, the results obtained from the Q-learning approach were found to be reasonably convergent with the Nash equilibrium.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 42

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 16 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2016
  • Volume: 

    14
  • Issue: 

    2
  • Pages: 

    137-146
Measures: 
  • Citations: 

    0
  • Views: 

    1118
  • Downloads: 

    0
Abstract: 

Q-learning is a one of the most popular and frequently used model-free reinforcement learning method. Among the advantages of this method is independent in its prior knowledge and there is a proof for its convergence to the optimal policy. One of the main limitations of this method is its low convergence speed, especially when the dimension is high. Accelerating convergence of this method is a challenge. Q-learning can be accelerated the convergence by the notion of opposite action. Since two Q-values are updated simultaneously at each learning step. In this paper, adaptive policy and the notion of opposite action are used to speed up the learning process by integrated approach. The methods are simulated for the grid world problem. The results demonstrate a great advance in the learning in terms of success rate, the percent of optimal states, the number of steps to goal, and average reward.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1118

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button